In an attempt to explore security issues in smart city transport infrastructure and give recommendations on how to address them, a Kaspersky Lab Global Research & Analysis Team (GReAT) expert has conducted field research into the specific types of road sensors that gather information about city traffic flow. As a result, Kaspersky Lab has proved that data gathered and processed by these sensors can be dramatically compromised. This could potentially affect future city authority decisions on the development of road infrastructure.
Transport infrastructure in a modern megalopolis represents a very complicated system, containing different sorts of traffic and road sensors, cameras and even smart traffic light systems. All of the information gathered by these devices is delivered and analysed in real-time by the special city authorities. Decisions about future road constructions and transport infrastructure planning can be made based on this information. If the data is compromised, it can cause millions worth of losses to the city.
In particular, if fraudulent access to the transport infrastructure is gained, the following may occur:
- The data gathered by road sensors may be compromised in an attempt to sabotage it or resell it to third parties;
- Modification, falsification and even deletion of critical data;
- Demolition of the expensive equipment;
- Sabotage the work of the city authority’s services.
Recent research by a Kaspersky Lab expert in Moscow was conducted on a network of road sensors that gather traffic flow information — in particular the quantity of vehicles on the road, their type and average speed. This information is transferred to the city authority’s command centre. City traffic authorities receive the information and use it to support and update a real-time road traffic map. The map, in turn, could then serve as a source of data for city road system construction or even for automating traffic light system controls.
The first security issue, discovered by the researcher, was the name of the vendor clearly printed on the sensor’s box. This crucial information helped the Kaspersky Lab expert to find more information online about how the device operates and what software it uses etc. The researcher discovered that the software used to interact with the sensor, as well as technical documentation, were all available on the vendor’s website. In fact, the technical documentation explained very clearly what commands could be sent to the device by a third party.
Just walking near the device, the researcher was able to access it via Bluetooth as no reliable authentication process was implemented. Anyone with a Bluetooth-enabled device and software for discovering passwords via multiple variants (brute force) could connect to a road sensor in this way. But what to do next?
Using the software and technical documentation, the researcher was able to observe all data gathered by the device. He was able to modify the way the device gathers new data: for example, changing the type of vehicle recorded from a car to a truck or changing the average traffic speed. As a result, all newly gathered data was false and not applicable to the needs of the city.
“Without the data gathered by these sensors, actual traffic analysis and subsequent city transport system adjustments would not be possible. These sensors can be used in the future to create a smart traffic light system and also to decide what kind of roads should be built and how traffic should be organised, or reorganised, in what areas of the city. All of these issues mean that the work of sensors and the quality of data gathered by them should be accurate and stable. Our research has shown that it is easy to compromise the data. It is essential to address these threats now, because in the future this could affect a bigger part of a city’s infrastructure”, said Denis Legezo, Security Researcher, Global Research and Analysis Team (GReAT), Kaspersky Lab.
Kaspersky Lab recommends several measures to help prevent a successful cyber-attack against transport infrastructure devices. These include:
- Remove or hide the vendor’s name on the device, as this could help an attacker to find tools online for hacking the device;
- Change the default names of the device and disguise the vendor’s MAC addresses if possible;
- Use two steps of authentication on devices with Bluetooth connectivity and protect them with strong passwords;
- Cooperate with security researchers to find and patch vulnerabilities.
To learn more about security in the transport industry, please read the blog post available at Securelist.com
The research has been conducted in relation to Kaspersky Lab’s support of the Securing Smart Cities initiative. Visit the Securing Smart Cities website to find more about the existing and future cybersecurity problems of smart cities and ways they can be solved.
[su_box title=”About Kapersky Lab” style=”noise” box_color=”#336588″][short_info id=”60907″ desc=”true” all=”false”][/su_box]
The opinions expressed in this post belongs to the individual contributors and do not necessarily reflect the views of Information Security Buzz.